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DYNAMIC LOADING AND CONFIGUATION
OF THREAT DETECTORS BASED ON
FEEDBACK FROM OTHER NODES

FIELD OF THE DISCLOSURE

The present application relates generally to computing
security, and more particularly to systems and methods for
automatically updating malware detection systems based on
the Dendritic Cell Algorithm (DCA).

BACKGROUND

Malware (viruses, trojans, “advanced persistent threats,”
etc.) represents a significant potential risk in embedded
network systems, such as, for example, computer networks
in factory control systems. Safeguarding the integrity of a
given network is often an important task for ensuring the
overall safety of critical systems. As a result, detection of
viruses and malware is an increasingly critical task in
embedded systems.

Unfortunately, recent trends demonstrate that malware
creators are willing to dedicate significant time and
resources to the dissemination of malware, and the malware
can often be cloaked and hidden in sophisticated ways.
Further, continual development of malware requires users to
continually take action to update additional malware pro-
tection in an effort to protect their devices and/or systems.
Usefully, viruses and hosts have been waging an on-going
war in the biological domain for many millennia. The
outcome of the biological war has been a remarkably
sophisticated and subtle system that can quickly detect,
attack, and kill harmful invaders, while managing to avoid
not only damage to the self, but also not killing other
symbiotic organisms in the body.

Artificial immune systems (AIS) are a collection of algo-
rithms developed from models or abstractions of the func-
tion of the cells of the human immune system. One category
of AIS is based on the Danger Theory, and includes the
Dendritic Cell Algorithm (DCA), which is based on the
behavior of Dendritic Cells (DCs) within the human immune
system. DCs have the power to suppress or activate the
immune system through the correlation of signals from an
environment, combined with location markers in the form of
antigen. The function of a DC is to instruct the immune
system to act when the body is under attack, policing the
tissue for potential sources of damage. DCs are natural
anomaly detectors, the sentinel cells of the immune system.
The DCA has demonstrated potential as a static classifier for
a machine learning data set and anomaly detector for real-
time port scan detection.

The DCA has been described in a number of references,
including Greensmith, Aickelin and Twycross, Articulation
and Clarification of the Dendritic Cell Algorithm. In Proc. of
the 5th International Conference on Artificial Immune Sys-
tems, LNCS 4163, 2006, pp. 404-417. The following fea-
tures of the DCA differentiate the algorithm from other AIS
algorithms: (1) multiple signals are combined and are a
representation of environment or context information; (2)
signals are combined with antigen in a temporal and dis-
tributed manner; (3) pattern matching is not used to perform
detection, unlike negative selection; and (4) cells of the
innate immune system are used as inspiration, not the
adaptive immune cells, and unlike clonal selection, no
dynamic learning is attempted.

As described in the DCA literature, DCs can perform
various functions, depending on their state of maturation.
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Modulation between these maturation states is facilitated by
the detection of signals within the tissue, namely: (1) danger
signals, (2) pathogenic associated molecular patterns
(PAMPs), (3) apoptotic signals (safe signals), and (4)
inflammatory cytokines. The DCA has been implemented
successfully in various localized applications, which have
made use of danger signals, PAMPs, and safe signals.
However, existing DCA implementations have not made use
of signals analogous to the inflammatory cytokines of DCs
in the biological domain. Further, existing DCA implemen-
tations do not dynamically change based on a malware
attack.

SUMMARY

The present application discloses an implementation of
the DCA that detects anomalous behavior in various pro-
cesses in a computing device. Unlike previous approaches,
the DCA implementation described herein dynamically
loads and/or updates indicators based on feedback from
other nodes and/or other processes.

In one example, a system for the detection of malicious
software includes a first node, a second node, a first DCA
module associated with the first node, and a second DCA
module associated with the second node. The first DCA
module uses the DCA to analyze the first node to determine
if malicious software exists and the second DCA module
uses the DCA to analyze the second node to determine if
malicious software exists. The first DCA module generates
an inflammatory signal indicating a likelihood that the first
node has been attacked by malicious software and the
second DCA module receives the generated inflammatory
signal from the first DCA module and dynamically changes
at least one parameter of at least one indicator within the
second DCA module based on the received inflammatory
signal from the first DCA module.

The received inflammatory signal may be a continuous
variable having a value within a range of 0 to 1. The received
inflammatory signal may have a strength indicator propor-
tional to a degree of certainty that the first node has been
attacked by malicious software. A sensitivity of at least one
indicator of the second DCA module may be dynamically
reduced by the second DCA module in response to the
received inflammatory signal. A sensitivity of at least one
indicator of the second DCA module may be dynamically
increased by the second DCA module in response to the
received inflammatory signal. The received inflammatory
signal from the first DCA module may include at least one
tuple, each tuple having three components, an indicator of
strength of the attack by malicious software, an identifier of
atype of indicator that is under attack by malicious software,
and a set of parameters for an initialization of at least one
indicator within the second DCA module. The parameter of
at least one indicator within the second DCA module may be
dynamically changed by the second DCA module based on
at least one of the components of the inflammatory signal.
The second DCA module may automatically change the at
least one parameter of the at least one indicator within the
second DCA module solely on the received inflammatory
signal from the first DCA module. The second DCA module
may automatically load at least one new indicator solely on
the received inflammatory signal from the first DCA mod-
ule. The first DCA module may dynamically unload an
indicator if the indicator does not identity a harmful antigen
over an extended period of time.

In one example, a system for the detection of malicious
software includes a first process, a second process, a first
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DCA module associated with the first process, and a second
DCA module associated with the second process. The first
DCA module uses the DCA to analyze the first process to
determine if malicious software exists and the second DCA
module uses the DCA to analyze the second process to
determine if malicious software exists. The first DCA mod-
ule generates an inflammatory signal indicating a likelihood
that the first process has been attacked by malicious software
and the second DCA module receives the generated inflam-
matory signal from the first DCA module and dynamically
changes at least one parameter of at least one indicator
within the second DCA module based on the received
inflammatory signal from the first DCA module.

The received inflammatory signal may be a continuous
variable having a value within a range of 0 to 1. The received
inflammatory signal may have a strength indicator propor-
tional to a degree of certainty that the first process has been
attacked by malicious software. A sensitivity of at least one
indicator of the second DCA module may be dynamically
reduced or increased by the second DCA module in response
to the received inflammatory signal. The received inflam-
matory signal from the first DCA module may include at
least one tuple, each tuple having three components, an
indicator of strength of the attack by malicious software, an
identifier of a type of indicator that is under attack by
malicious software, and a set of parameters for an initial-
ization of at least one indicator within the second DCA
module. The at least one parameter of the at least one
indicator within the second DCA module may be dynami-
cally changed by the second DCA module based on at least
one of the components of the inflammatory signal. The
second DCA module may automatically change the at least
one parameter of at least one indicator within the second
DCA module solely on the received inflammatory signal
from the first DCA module. The second DCA module may
automatically load at least one new indicator solely on the
received inflammatory signal from the first DCA module.
The first DCA module may dynamically unload an indicator
if the indicator does not identify a harmful antigen over an
extended period of time.

One example of a method of operating a computer net-
work includes running a DCA on a first DCA module,
identifying a harmful antigen by an indicator of the first
DCA module based on predetermined criteria by the first
DCA module, and transmitting an inflammatory signal from
the first DCA module to a second DCA module based on
identifying the harmful antigen. The method includes
receiving the transmitted inflammatory signal at the second
DCA module and dynamically changing at least one param-
eter of at least one indicator of the second DCA module
based on the received inflammatory signal.

The received inflammatory signal may be comprised of at
least one tuple, each tuple may have at least three compo-
nents, an indicator of strength of the attack by malicious
software, an identifier of a type of indicator that was
generating the strongest signal in the presence of the mali-
cious software, and a set of parameters for an initialization
of at least one indicator within the second DCA module.
Dynamically changing the at least one parameter of at least
one indicator of the second DCA module may be based on
at least one of the components of the received inflammatory
signal. Dynamically changing the at least one parameter of
the at least one indicator of the second DCA module may be
done automatically based solely on the received inflamma-
tory signal. Dynamically changing the at least one indicator
of the second DCA module may include decreasing or
increasing a sensitivity of the indicator. Dynamically chang-
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ing the at least one indicator of the second DCA module may
include loading a new indicator. The method may include
monitoring an indicator of a DCA module and dynamically
unloading the indicator from the DCA module if the indi-
cator does not identify a harmful antigen over an extended
period of time.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating one example of a
computing device with a number of processes comprising a
Dendritic Cell Algorithm (DCA) module.

FIG. 2 is a block diagram illustrating one example of a
computing node comprising a DCA module.

FIG. 3 is a block diagram illustrating one example of a
DCA module.

FIG. 4 is a flow chart illustrating a method of operating of
an individual DC within a DCA module.

FIG. 5 is a block diagram illustrating an example of a
network with a plurality of computing nodes including DCA
modules.

FIG. 6 is a block diagram illustrating an example of a
network with a plurality of computing nodes including DCA
modules.

FIG. 7 is a flow chart showing one example of a method
of dynamically updating an indicator(s) of a DCA module.

While the disclosure is susceptible to various modifica-
tions and alternative forms, specific embodiments have been
shown by way of example in the drawings and will be
described in detail herein. However, it should be understood
that the disclosure is not intended to be limited to the
particular forms disclosed. Rather, the intention is to cover
all modifications, equivalents and alternatives falling within
the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION

The present application discloses an implementation of
the DCA that makes use of a known, but mostly unused,
feature of the DCA: inflammation, to signal of a possible
attack among processes of a computing device and/or among
nodes of a distributed or a centralized network, and dynami-
cally load and/or update malware protection based on the
inflammation signal. The malware protection is updated
and/or loaded, without user intervention, by updating at least
one parameter of an indicator in a DCA module based on
receiving the inflammation signal from another DCA mod-
ule. The inflammation signal may be from a DCA module
corresponding to a node or corresponding to an individual
process. As used herein, the term “computing device” may
refer to any device that includes a processor that is adapted
to run one or more processes. As used herein, the term
“network” may refer to a system with a plurality of discrete
computing devices, a plurality of logical nodes within a
single computing device (e.g., a plurality of virtual
machines, individual computing processes, etc.), and/or a
combination of discrete computing devices and logical
nodes.

In some cases, as described below, various processes
within a computing device run an instantiation of the DCA,
which computes “signals” from the process(es), and regu-
larly determines the potential for a particular “antigen” to be
harmful, based on pre-determined criteria. The processes
within the computing device are linked together through
various networks, buses, or other channels of communica-
tion. When an anomaly is detected by the DCA module of
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one process, the module propagates an inflammation signal
to other DCA modules within the computing device. This
approach helps to put other processes on alert and may even
dynamically change the sensitivity of the indicators of DCA
modules associated with the other processes as detailed
herein. In addition, this approach may dynamically load or
unload indicators of DCA modules.

In some cases, as described below, each individual node
within a network runs an instantiation of the DCA, which
computes “signals” from the local node based on the node’s
current condition, and regularly determines the potential for
a particular “antigen” to be harmful, based on pre-deter-
mined criteria. The nodes are linked together through a
network or other channels of communication. When an
anomaly is detected by the DCA module of one node, the
module propagates an inflammation signal to other nodes on
the network. This approach helps to put other nodes on alert
and may even dynamically change the sensitivity of the
indicators of DCA modules associated with the other nodes
as detailed herein.

The inflammation signal may be considered as a tuple
consisting of multiple components. The inflammation signal
may be a list of one or more tuples. The tuple may include
various components. For example, the components of the
inflammation signal, also referred to herein as an inflam-
matory tuple, may include a strength, a Primelndicator, and
an optional third element, p. The strength component is an
indication of the magnitude or damage of the malware attack
on a process and/or a node. The strength component may
provide a degree of certainty that a process has been attacked
by malicious software. The Primelndicator may be an iden-
tifier of the indicator type that is the main source of the
inflammation signal. The optional third element, p, may be
a set of parameters for the initialization or updating of an
indicator of the DCA module receiving the inflammation
signal. The DCA module may sort or filter a list of tuples
received as an inflammation signal based on the magnitude
of the strength value.

Previous work with the DCA has focused at the node or
logical computing element. The present application contem-
plates a level of analysis at both the node level as well as to
an individual process or partition running on a node. Pro-
cess, as used herein, should be understood to include a
physical or logical partition, as well as a process. A system
that implements the DCA may be made up of three com-
ponent parts: signal detection and processing (also called
“indicators™), antigen identification, and the DCA itself,
which functions as a correlation mechanism between the
signals and the antigens. This DCA system may run at the
individual process or partition level, one system for each
process or partition running on a computing device or in a
network of computing devices.

The individual instances of the DCA system can be
customized based on the features of the process and/or node
being examined. The features of a process can be determined
at process start-up, using attributes such as process name,
process security level, any resources the process declares it
will use, either directly through security entitlements, or
indirectly via support libraries it imports. These features are
used to customize the set of indicators as well as antigen
identification algorithm that the DCA system will use to
monitor the health of the process. The set of indicators can
also be specified by a configuration mechanism to ensure
that all instances are running at least a basic set of common
indicators, or that certain classes of processes all get a
particular set of indicators. A system may include indicators
adapted for the same situations, but located at different
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nodes, or processes, throughout the system and thus, these
indicators may have corresponding “names” throughout the
system. Likewise, a set of indicators corresponding to nodes
of a network can also be specified by a configuration
mechanism. These sets of indicators may also be customized
dynamically by the reception of an inflammation signal from
another DCA module. Likewise, individual indicator param-
eters may be updated and/or loaded dynamically by the
reception of an inflammation signal from another DCA
module.

Once an instance of the DCA system is started up, the
instances may communicate in a light-weight fashion, using
the inflammation signal as a way of reflecting the health of
the process. This allows the process-level instances to incor-
porate “global” system health into their local computation
about the health of the process. The use of DCA instances
associated with the processes running on a computing device
provides for a fine-grained examination of the integrity of
the computing device. The analysis of the DCA at a process
level may be beneficial. For example, where a number of
different activities are being performed on a node, for
instance, a common computing resource, the many different
processes occurring may lead to false positives. The use of
the DCA at the process level allows for specialization of the
individual “detectors,” while still allowing for coordination
between the individual threat detectors.

FIG. 1 is a block diagram illustrating one example of a
computing device 100 comprising a plurality of processes
155 and a plurality of Dendritic Cell Algorithm (DCA)
modules 105. The computing device 100 may comprise
various discrete computing devices (e.g., desktop computer,
notebook computer, etc.), which may communicate with
similar computing devices in a network. In other cases, the
computing device 100 may comprise a logical “node” (e.g.,
virtual machine, computing process, etc.), which may oper-
ate in parallel with similar logical nodes within a single
computing device. Therefore, as described above, a com-
puting device may comprise a discrete computing device, a
collection of logical nodes within a single computing device,
and/or a combination of the two.

In the illustrated example, the computing device 100
comprises a plurality of processes 155 (labeled Process 1
through Process N in FIG. 1) operating in connection with
DCA modules 105 within the computing device 100. In
addition, each DCA module 105 may comprise a plurality of
sensors 110, indicators 115, a tissue module 120, and a
plurality of individual dendritic cell (DC) instances 125. The
operation and interaction of the components of the DCA
module 105 are described below. In FIG. 1, the DCA
Module 105 is depicted within the processes 155 for illus-
trative purposes only as a DCA Module 105 may correspond
to a process 155 without being contained within the process
155. FIG. 1 also only depicts a single computing device 100
for illustrative purposes only as processes 155 and DCA
modules 105 on multiple computing devices 100 may be in
communication over various networks, wired and/or wire-
less, as would be appreciated by one of ordinary skill in the
art having the benefit of this disclosure.

FIG. 2 is a block diagram illustrating one example of a
computing node 101 comprising a DCA module 105. In
some cases, the computing node 101 may comprise a
discrete computing device (e.g., desktop computer, note-
book computer, etc.), which may communicate with similar
computing devices in a network. In other cases, the com-
puting node 101 may comprise a logical “node” (e.g., virtual
machine, computing process, etc.), which may operate in
parallel with similar logical nodes within a single computing
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device. Therefore, as described above, a network of com-
puting nodes may comprise a collection of discrete comput-
ing devices, a collection of logical nodes within a single
computing device, and/or a combination of the two.

In the illustrated example, the computing node 101 com-
prises a plurality of processes 155 (labeled Process 1
through Process N in FIG. 2) operating in parallel with the
DCA module 105 within the computing node 101. In addi-
tion, the DCA module 105 comprises a plurality of sensors
110, indicators 115, a tissue module 120, and a plurality of
individual dendritic cell (DC) instances 125. The operation
and interaction of the components of the DCA module 105
are described below.

FIG. 3 is a block diagram illustrating one example of a
DCA module 105. In the example illustrated in FIG. 3, the
DCA module 105 comprises a plurality of sensors 110,
which measure raw sensor data, such as, for example,
computer network information (e.g., packet data, etc.) and/
or process information (e.g., processor time, memory usage,
page faults, etc.). As shown in FIG. 3, the raw sensor data
can be used by a selected number of DCA indicators 115
(labeled Indicator 1 through Indicator N in FIG. 3) to
generate signals, which may represent a wide variety of
parameters. For example, in some cases, Indicator 1 may
generate a heartbeat or “keep alive” signal, Indicator 2 may
generate a processor load signal or a packet size signal, and
Indicator N may generate a signal representing a sender’s
network address. Other examples of suitable indicators 115
may include signals indicative of parameters such as band-
width, processor memory utilization, processor load, etc.

As shown in FIG. 3, the signals generated by indicators
115 are combined by a signal combiner 130, which may
perform a variety of suitable combination functions. For
example, in some cases, the signal combiner 130 may sum
signals from the indicators 115, whereas in other cases, the
signal combiner 130 may average the signals from indicators
115. As yet another example, the signal combiner 130 may
determine the median value of the signals from the indica-
tors 115. Using a suitable combination function, the signal
combiner 130 creates an aggregated indicator signal 135,
which is provided as an input to the tissue module 120. In
addition, the raw sensor data is used by an antigen generator
140 to create an antigen 145, which is also provided as an
input to the tissue module 120. The signal combiner 130 may
provide a sorted list of Primelndicators to a local DCA
module 105. The DCA module 105 may then generate one
or more inflammatory tuples, based on the magnitude of the
signal strength of the Primelndicator list.

An aggregated signal 135 and antigen 145 are created for
each individual raw sensor “event.” For example, in the case
of network traffic, a raw sensor event may comprise a
packet, whereas in the case of processor load, a raw sensor
event may comprise a selected time period (e.g., 0.1 sec-
onds, etc.). The tissue module 120, in turn, includes a
temporal combiner 160, which combines an array of one or
more aggregated indicator signals 135 received over time, to
generate a “DC-Seen” signal 165. In some cases, the tem-
poral combiner 160 may average the aggregated indicator
signals 135, whereas in other cases, the temporal combiner
160 may determine the maximum or median of the aggre-
gated indicator signals 135. The temporal combiner 160
includes a “look back” period, which may correspond to a
selected time period (e.g., 3 seconds) or a number of events.

In operation, the tissue module 120 manages the indicator
signal 135 and the antigen 145, and provides the DC-Seen
signal 165 to a plurality of individual DC instances 125
located in a plurality of DC slots 150 (labeled DC Slot 1
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through DC Slot N in FIG. 3). As the individual DC
instances 125 age out, they present the resulting data back to
the tissue module 120, which aggregates the data across the
plurality of individual DC instances 125.

FIG. 4 is a flow chart illustrating an example of a process
300 for operating an individual DC instance 125 within a
DCA module 105. In a first step 305, the DC instance 125
is created and initialized. During operation of the DC
instance 125, as indicated at block 310, raw sensor data is
provided by the sensors 110 of the DCA module 105. In a
data processing event 315, an antigen 145 is created by the
antigen generator 140, and the raw sensor data is processed
to create an indicator signal 135. The antigen 145 typically
represents an existing attribute of the system on which the
DC instance 125 operates, such as, for example, the name of
a program installed on the computing device 100 or the
computing node 101, a file name, an address of another node
101 on the same network, etc. In addition, as known in the
DCA art, the indicator signal 135 may comprise a vector of
the following signals: (a) PAMP, (b) Danger, (c) Safe, and
(d) Inflammation signal.

The indicator signal 135 is passed to a signal transforma-
tion event 320. The antigen 145 is passed to an antigen
sampling event 325. In each DC instance 125, a single
indicator signal 135 and zero, one or more antigens 145 can
be fed to the DC instance 125. The processed indicator
signals 135 and sampled antigen 145 are correlated by a
temporal correlation event 330 based on their time stamps.
In a decision block 335, the process 300 determines whether
a maturation threshold has been reached. If not, the process
300 returns to the data processing event 315. The DC
instance 125 repeats the events described above cyclically,
until the maturation threshold is reached, which indicates
that the DC instance 125 has acquired sufficient information
for decision making.

Once the DC instance 125 reaches its maturation thresh-
old, the DC instance 125 changes from a correlating state to
an information presenting state. Based on the indicator
signals 135 and the antigen 145 correlated by the temporal
correlation event 330, the DC instance 125 determines
whether any potential anomalies appeared within the input
data. The results of this decision are presented by an
information presenting event 340 as the output of the DC
instance 125, as indicated at block 345. In a final step 350,
the DC instance 125 is terminated, marking the end of the
lifespan of the DC instance 125. In many cases, the process
300 then returns to step 305, in which another DC instance
125 is created and initialized, and the process 300 is
repeated.

FIG. 5 is a block diagram illustrating one example of a
distributed computer network 505A (e.g., peer-to-peer net-
work, ad hoc wireless network, etc.), having a plurality of
nodes 101, each including a Dendritic Cell Algorithm
(DCA) module 105. In the particular example illustrated in
FIG. 5, the distributed network 505A comprises six nodes
101A-101F that are interconnected as shown. Any indi-
vidual node 101 may be in communication with any other
node 101 (or multiple other nodes 101) in the distributed
network 505A. For example, node 101B is in communica-
tion with four other nodes 101 (i.e., nodes 101A, 101C,
101E, 101F), whereas node 101D is in communication with
only one other node 101 (i.e., node 101C). Those of ordinary
skill in the art will understand that the distributed network
505A may include a greater or fewer number of nodes 101,
and that the interconnections between individual nodes 101
may vary widely from the example shown in FIG. 5.
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FIG. 6 is a block diagram illustrating one example of a
centralized computer network 505B (e.g., client-server net-
work, etc.), having a central server 510 in communication
with a plurality of clients or nodes 101, each including a
DCA module 105. In the particular example illustrated in
FIG. 6, the centralized network 505B comprises six nodes
101G-101L in communication with the central server 510 in
a star network topology. Those of ordinary skill in the art
will understand that the centralized network 505B may
include a greater or fewer number of nodes 101, and that a
variety of other suitable network topologies (e.g., bus net-
work, ring network, etc.) may be employed.

The DCA module 105 associated with any process 155
within a computing device 100 may be in communication
with other DCA modules 105 as shown in FIG. 1. In
operation, the DCA modules 105 constantly monitor the
processes 155 for abnormal activity, which may be identified
as a harmful antigen based on selected criteria, as described
above in connection with FIG. 4. When such a harmful
antigen is identified for a particular process 155, the corre-
sponding DCA module 105 may transmit an inflammatory
signal to the remaining processes 155 with corresponding
DCA modules 105 within the computing device 100. Like-
wise, the DCA module 105 associated with any node 101
within a network may be in communication with other DCA
modules 105 within the network as shown in FIG. 5 and as
shown in FIG. 6. When such a harmful antigen is identified
for a particular node 101, the corresponding DCA module
105 may transmit an inflammatory signal to the remaining
nodes 101 with corresponding DCA modules 105 within the
network. The inflammatory tuple may be used by the receiv-
ing DCA module to dynamically update at least one param-
eter of at least one indicator within the DCA module.

The inflammatory signal may be composed of one or
more inflammatory tuples, which in turn may be comprised
of multiple components. For example, the components of the
inflammatory tuple may include a strength, a Primelndica-
tor, and an optional third element, p. The strength compo-
nent may be an indication of the magnitude or damage of the
malware attack. The strength component may also provide a
degree of certainty that a process has been attacked by
malicious software. The Primelndicator may be an identifier
of the indicator type that is the source of the inflammation
tuple. The Primelndicator may indicate to a receiving DCA
module as to what indicator(s) may need to be dynamically
modified. The optional third element, p, may be a set of
parameters for the initialization or updating of an indicator
of'the DCA module receiving the inflammatory tuple. These
components of an inflammatory tuple are for illustrative
purposes only as the inflammatory tuple could include more
than three components and may include various data com-
ponents that differ from the above described components,
such as the number of DCs or how long a DC stays alive, as
would be appreciated by one of ordinary skill in the art
having the benefit of this disclosure. The inflammatory tuple
may cause the DCA module to automatically modify an
indicator and/or load a new indicator without any user
intervention. The dynamic update of indicators may better
protect computer devices and/or networks than systems that
require updates to be initialized by a user or system admin-
istrator.

This inflammatory tuple is analogous to the human
immune system’s inflammatory cytokines (e.g., interferon,
tumor necrosis factor, etc.). The inflammatory signal is used
to indicate to other processes 155 and/or nodes 101 having
corresponding DCA modules 105 that a possible attack is
underway, and for the other DCA modules 105 to modulate
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their response to local signal changes. The inflammatory
tuple’s strength component may be a continuous variable,
which may range from 0 to 1 in some cases. The inflam-
matory signal is raised when one or more antigens have been
detected as a possible invader, or a known event has
occurred, or for some other reason, such as a suspicion or
warning of an attack.

FIG. 7 is a flow chart illustrating an example of a method
600 of dynamically updating an indicator or indicators 115
of a DCA module 105 upon receiving an inflammation
signal from another DCA module 105. In the illustrated
example, the process 600 begins with a first step 605, in
which the DCA module 105 of a given node 101 of a
network or a DCA module 105 of given process 155 in a
computing device 100 is initialized. In a next step 610, the
DCA module 105 monitors the local indicator signals 135
(e.g., PAMP, Danger, and Safe) collected locally at the node
101 or the process 155. In a next step 615, the DCA module
105 receives an inflammation signal, which may be sent
from another node 101 of a distributed network 505A or
from the central server 510 of a centralized network 505B or
from another process 155 on a computing device 100, as
described above. In a next step 620, the DCA module 105
analyzes the components of the inflammation signal. As
discussed above, the inflammation signal may include vari-
ous components. For example, the inflammation signal may
include one or more inflammatory tuples, each of each of
which may include a strength indicator, an identifier for the
indicator that is the primary source of the inflammation
signal, and/or a set of parameters for the initialization of an
indicator.

In a next step 625, the DCA module 105 determines
whether the components of the inflammation signal indicate
that an indicator(s) should be updated or initialized. This
determination may be done on the basis of the magnitude of
each strength indicator of the constituent inflammatory
tuples of the inflammation signal. If the DCA module 105
determines that the indicator(s) should not be updated based
on at least one of the inflammation tuples, the DCA module
returns to step 610 and continues to monitor the local
indicator signals. If the DCA module 105 determines that the
indicator(s) should be updated based on the inflammation
tuple, the method moves on to step 630. In step 630, the
DCA module dynamically updates or initializes an
indicator(s) of the DCA module 105. The update is done
dynamically and automatically. In other words, the update is
done without need for user or administrator intervention.
The inflammation signal itself may provide the parameters
necessary for the update of the indicator(s). In a next step
635, the DCA module 105 transmits the current status of the
node 101 or process 155 to other DCA modules 105 in the
computing device 100 and/or network.

The systems and methods described above demonstrate a
number of distinct advantages over previous approaches.
For example, the DCA module 105 of the present application
demonstrates an ability to dynamically update indicators
without user intervention. The indicators are updated based
on a malware attack and thus, may better protect the
computer device and/or network.

Although various embodiments have been shown and
described, the present disclosure is not so limited and will be
understood to include all such modifications and variations
are would be apparent to one skilled in the art.
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What is claimed is:

1. A system for detection of malicious software compris-
ing:

a processor;

a memory comprising instructions stored therein which

when executed, implement:

a first node;

a second node;

a first dendritic cell algorithm (DCA) module associated
with the first node, wherein the first DCA module uses
a DCA to analyze the first node to determine if mali-
cious software exists;

a second dendritic cell algorithm (DCA) module associ-
ated with the second node, wherein the second DCA
module uses a DCA to analyze the second node to
determine if malicious software exists;

wherein the first DCA module generates an indicator
comprising a pathogenic associated molecular patterns
(PAMP) signal, a danger signal, a safe signal, and an
inflammatory signal, the inflammatory signal indicat-
ing a likelihood that the first node has been attacked by
malicious software; and

wherein the second DCA module receives the generated
inflammatory signal from the first DCA module and
dynamically changes at least one parameter of at least
one indicator within the second DCA module based on
the received inflammatory signal from the first DCA
module.

2. The system of claim 1, wherein the received inflam-
matory signal comprises a continuous variable having a
value within a range of 0 to 1.

3. The system of claim 1, wherein the received inflam-
matory signal has a strength indicator proportional to a
degree of certainty that the first node has been attacked by
malicious software.

4. The system of claim 1, wherein a sensitivity of at least
one indicator of the second DCA module is dynamically
reduced by the second DCA module in response to the
received inflammatory signal.

5. The system of claim 1, wherein a sensitivity of at least
one indicator of the second DCA module is dynamically
increased by the second DCA module in response to the
received inflammatory signal.

6. The system of claim 1, wherein the received inflam-
matory signal from the first DCA module comprises at least
one tuple, each tuple comprising three components, an
indicator of a strength of an attack by malicious software, an
identifier of a type of indicator that is under attack by
malicious software, and a set of parameters for an initial-
ization of at least one indicator within the second DCA
module.

7. The system of claim 6, wherein at the least one
parameter of the at least one indicator within the second
DCA module is dynamically changed by the second DCA
module based on at least one of the components of the
inflammatory signal.

8. The system of claim 1, wherein the second DCA
module automatically changes the at least one parameter of
the at least one indicator within the second DCA module
solely on the received inflammatory signal from the first
DCA module.

9. The system of claim 1, wherein the second DCA
module automatically loads at least one new indicator solely
on the received inflammatory signal from the first DCA
module.
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10. The system of claim 1, wherein the first DCA module
dynamically unloads an indicator if the indicator does not
identify a harmful antigen over an extended period of time.

11. A system for detection of malicious software com-
prising

a processor;

a memory comprising instructions stored therein which
when executed, implement:

a first process;

a second process;

a first dendritic cell algorithm (DCA) module associated
with the first process, wherein the first DCA module
uses a DCA to analyze the first process to determine if
malicious software exists;

a second dendritic cell algorithm (DCA) module associ-
ated with the second process, wherein the second DCA
module uses a DCA to analyze the second process to
determine if malicious software exists;

wherein the first DCA module generates an indicator
comprising a pathogenic associated molecular patterns
(PAMP) signal, a danger signal, a safe signal, and an
inflammatory signal, the inflammatory signal indicat-
ing a likelihood that the first process has been attacked
by malicious software; and

wherein the second DCA module receives the inflamma-
tory signal from the first DCA module and dynamically
changes at least one parameter of at least one indicator
within the second DCA module based on the received
inflammatory signal from the first DCA module.

12. The system of claim 11, wherein the received inflam-
matory signal comprises a continuous variable having a
value within a range of 0 to 1.

13. The system of claim 11, wherein the received inflam-
matory signal has a strength indicator proportional to a
degree of certainty that the first process has been attacked by
malicious software.

14. The system of claim 11, wherein a sensitivity of at
least one indicator of the second DCA module is dynami-
cally reduced by the second DCA module in response to the
received inflammatory signal.

15. The system of claim 11, wherein a sensitivity of at
least one indicator of the second DCA module is dynami-
cally increased by the second DCA module in response to
the received inflammatory signal.

16. The system of claim 11, wherein the received inflam-
matory signal from the first DCA module comprises at least
one tuple, each tuple comprising three components, an
indicator of a strength of the attack by malicious software,
an identifier of a type of indicator that is under attack by
malicious software, and a set of parameters for an initial-
ization of at least one indicator within the second DCA
module.

17. The system of claim 16, wherein the at least one
parameter of the at least one indicator within the second
DCA module is dynamically changed by the second DCA
module based on at least one of the components of the
received inflammatory signal.

18. The system of claim 11, wherein the second DCA
module automatically changes the at least one parameter of
at least one indicator within the second DCA module solely
on the received inflammatory signal from the first DCA
module.

19. The system of claim 11, wherein the second DCA
module automatically loads at least one new indicator solely
on the received inflammatory signal from the first DCA
module.
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20. The system of claim 11, wherein the first DCA module
dynamically unloads an indicator if the indicator does not
identify a harmful antigen over an extended period of time.

21. A method of operating a computer network compris-
ing:

running a Dendritic Cell Algorithm (DCA) on a first DCA

module;

identifying a harmful antigen by an indicator of the first

DCA module based on predetermined criteria estab-
lished by the first DCA module, the indicator compris-
ing a pathogenic associated molecular patterns (PAMP)
signal, a danger signal, a safe signal, and an inflam-
matory signal, the inflammatory signal indicating a
likelihood that the first process has been attacked by
malicious software;

transmitting the inflammatory signal from the first DCA

module to a second DCA module based on the identi-
fying a harmful antigen;

receiving the transmitted inflammatory signal at the sec-

ond DCA module; and

dynamically changing at least one parameter of at least

one indicator of the second DCA module based on the
received inflammatory signal.

22. The method of claim 21, wherein the received inflam-
matory signal is comprised of at least one tuple, each tuple
comprising at least three components, an indicator of a
strength of the attack by malicious software, an identifier of
atype of indicator that is under attack by malicious software,
and a set of parameters for an initialization of at least one
indicator within the second DCA module.
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23. The method of claim 22, wherein the at least one
parameter of at least one indicator within the second DCA
module is dynamically changed by the second DCA module
based on at least one of the components of the received
inflammatory signal.

24. The method of claim 21, wherein dynamically chang-
ing the at least one parameter of the at least one indicator of
the second DCA module is done automatically by the second
DCA module solely on the received inflammatory signal
from the first DCA module.

25. The method of claim 21, wherein dynamically chang-
ing the at least one parameter of the at least one indicator of
the second DCA module further comprises decreasing a
sensitivity of the indicator.

26. The method of claim 21, wherein dynamically chang-
ing the at least one parameter of the at least one indicator of
the second DCA module further comprises increasing a
sensitivity of the indicator.

27. The method of claim 21, wherein dynamically chang-
ing the at least one parameter of the at least one indicator of
the second DCA module further comprises loading a new
indicator.

28. The method of claim 21, further comprising:

monitoring an indicator of a DCA module; and
dynamically unloading the indicator from the DCA module
if the indicator does not identify a harmful antigen over an
extended period of time.
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